Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Scand J Med Sci Sports ; 2022 Nov 07.
Article in English | MEDLINE | ID: covidwho-2241916

ABSTRACT

INTRODUCTION: At the pandemic's beginning, significant concern has risen about the prevalence of myocardial involvement after SARS-CoV-2 infection. We assessed the cardiovascular burden of SARS-CoV-2 in a large cohort of athletes and identified factors that might affect the disease course. We included 633 athletes in our study on whom we performed extensive cardiology examinations after recovering from SARS-CoV-2 infection. More than half of the athletes (n = 322) returned for a follow-up examination median of 107 days after the commencement of their infection. RESULTS: Troponin T positivity was as low as 1.4% of the athletes, where the subsequently performed examinations did not show definitive, ongoing myocardial injury. Altogether, 31% of the athletes' rapid training rebuild was hindered by persistent or reoccurring symptoms. Female athletes reported a higher prevalence of return to play (RTP) symptoms than their male counterparts (34% vs. 19%, p = 0.005). The development of long COVID symptoms was independently predicted by increasing age and acute symptoms' severity in a multiple regression model (AUC 0.75, CI 0.685-0.801). Athletes presenting with either or both cough and ferritin levels higher than >150 µg/L had a 4.1x (CI 1.78-9.6, p = 0.001) higher odds ratio of developing persistent symptoms. CONCLUSION: While SARS-CoV-2 rarely affects the myocardium in athletes, about one in three of them experience symptoms beyond the acute phase. Identifying those athletes with a predisposition to developing long-standing symptoms may aid clinicians and trainers in finding the optimal return-to-play timing and training load rebuild pace.

2.
Sci Rep ; 12(1): 21686, 2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2160305

ABSTRACT

After SARS-CoV-2 infection, strict recommendations for return-to-sport were published. However, data are insufficient about the long-term effects on athletic performance. After suffering SARS-CoV-2 infection, and returning to maximal-intensity trainings, control examinations were performed with vita-maxima cardiopulmonary exercise testing (CPET). From various sports, 165 asymptomatic elite athletes (male: 122, age: 20y (IQR: 17-24y), training:16 h/w (IQR: 12-20 h/w), follow-up:93.5 days (IQR: 66.8-130.0 days) were examined. During CPET examinations, athletes achieved 94.7 ± 4.3% of maximal heart rate, 50.9 ± 6.0 mL/kg/min maximal oxygen uptake (V̇O2max), and 143.7 ± 30.4L/min maximal ventilation. Exercise induced arrhythmias (n = 7), significant horizontal/descending ST-depression (n = 3), ischemic heart disease (n = 1), hypertension (n = 7), slightly elevated pulmonary pressure (n = 2), and training-related hs-Troponin-T increase (n = 1) were revealed. Self-controlled CPET comparisons were performed in 62 athletes: due to intensive re-building training, exercise time, V̇O2max and ventilation increased compared to pre-COVID-19 results. However, exercise capacity decreased in 6 athletes. Further 18 athletes with ongoing minor long post-COVID symptoms, pathological ECG (ischemic ST-T changes, and arrhythmias) or laboratory findings (hsTroponin-T elevation) were controlled. Previous SARS-CoV-2-related myocarditis (n = 1), ischaemic heart disease (n = 1), anomalous coronary artery origin (n = 1), significant ventricular (n = 2) or atrial (n = 1) arrhythmias were diagnosed. Three months after SARS-CoV-2 infection, most of the athletes had satisfactory fitness levels. Some cases with SARS-CoV-2 related or not related pathologies requiring further examinations, treatment, or follow-up were revealed.

3.
Physiol Int ; 109(4): 511-523, 2022 Dec 14.
Article in English | MEDLINE | ID: covidwho-2154402

ABSTRACT

Background: Organization of mass sport events in the COVID-19 era is utterly complicated. Containments measures, required to avoid a virus outbreak, force athletes to compete under circumstances they never experienced before, most likely having a deleterious effect on their performance. Purpose: We aimed to design a so-called athlete-friendly bubble system for the International Swimming League 2020 event, which is strict enough to avoid a COVID-19 outbreak, but still provides a supportive environment for the athletes. Methods: To avoid the feeling of imprisonment, athletes were permitted to spend a certain amount of time in the parks surrounding the hotels. Such alleviations were possible to apply with strict adherence to the hygienic and social distancing protocols and regular COVID-19 testing. Evaluation of every COVID-19 positive case was key, and if prolonged PCR positivity or false positive PCR result was identified, the unnecessary quarantine was planned to be lifted. Return to play protocol (RTP) was planned, in case of a COVID-19 infection of an athlete inside the bubble. To test, if the athlete-friendly system provided a supportive environment, we evaluated athlete performance. Results: 11,480 PCR tests were performed for 1,421 individuals. 63 COVID-19 positive cases were detected, of which 5 turned out to be clinically insignificant, either because of prolonged PCR positivity or because of a false positive result. 93.1% of the positive cases were detected in the local crew, while no athlete got infected inside the bubble, as the two infected athletes were tested positive upon arrival. RTP was provided for two athletes. 85% of the athletes showed improvement during the bubble and 8 world records were broken. Conclusion: The applied protocol proved to be effective, as no athlete got infected inside the bubble, moreover, the athlete-friendly system supported the athletes to improve their performance.


Subject(s)
Athletic Performance , COVID-19 , Humans , Swimming , COVID-19 Testing , COVID-19/diagnosis , COVID-19/epidemiology , Athletes
4.
Br J Sports Med ; 56(10): 553-560, 2022 May.
Article in English | MEDLINE | ID: covidwho-1546486

ABSTRACT

OBJECTIVES: To investigate the cardiovascular consequences of SARS-CoV-2 infection in highly trained, otherwise healthy athletes using cardiac magnetic resonance (CMR) imaging and to compare our results with sex-matched and age-matched athletes and less active controls. METHODS: SARS-CoV-2 infection was diagnosed by PCR on swab tests or serum immunoglobulin G antibody tests prior to a comprehensive CMR examination. The CMR protocol contained sequences to assess structural, functional and tissue-specific data. RESULTS: One hundred forty-seven athletes (94 male, median 23, IQR 20-28 years) after SARS-CoV-2 infection were included. Overall, 4.7% (n=7) of the athletes had alterations in their CMR as follows: late gadolinium enhancement (LGE) showing a non-ischaemic pattern with or without T2 elevation (n=3), slightly elevated native T1 values with or without elevated T2 values without pathological LGE (n=3) and pericardial involvement (n=1). Only two (1.4%) athletes presented with definite signs of myocarditis. We found pronounced sport adaptation in both athletes after SARS-CoV-2 infection and athlete controls. There was no difference between CMR parameters, including native T1 and T2 mapping, between athletes after SARS-CoV-2 infection and the matched athletic groups. Comparing athletes with different symptom severities showed that athletes with moderate symptoms had slightly greater T1 values than athletes with asymptomatic and mildly symptomatic infections (p<0.05). However, T1 mapping values remained below the cut-off point for most patients. CONCLUSION: Among 147 highly trained athletes after SARS-CoV-2 infection, cardiac involvement on CMR showed a modest frequency (4.7%), with definite signs of myocarditis present in only 1.4%. Comparing athletes after SARS-CoV-2 infection and healthy sex-matched and age-matched athletes showed no difference between CMR parameters, including native T1 and T2 values.


Subject(s)
COVID-19 , Myocarditis , Athletes , Contrast Media , Female , Gadolinium , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Male , Myocarditis/diagnostic imaging , Myocardium/pathology , Predictive Value of Tests , SARS-CoV-2
5.
Int J Environ Res Public Health ; 18(18)2021 09 16.
Article in English | MEDLINE | ID: covidwho-1409529

ABSTRACT

BACKGROUND: The Olympic preparation of athletes has been highly influenced by COVID and post-COVID syndrome. As the complex screening of athletes is essential for safe and successful sports, we aimed to repeat the 2019-year sports cardiology screening of the Olympic Swim Team before the Olympics and to compare the results of COVID and non-COVID athletes. METHODS: Patient history, electrocardiogram, laboratory tests, body composition analysis, echocardiography, cardiopulmonary exercise test (CPET) were performed. We used time-ranking points to compare swimming performance. RESULTS: From April 2019, we examined 46 elite swimmers (24 ± 4 years). Fourteen swimmers had COVID infection; all cases were mild. During CPET there was no difference in the performance of COVID (male: VO2 max 55 ± 4 vs. 56.5 ± 5 mL/kg/min, p = 0.53; female: VO2 max 54.6 ± 4 vs. 56 ± 5.5 mL/kg/min, p = 0.86) vs. non-COVID athletes (male VO2 max 56.7 ± 5 vs. 55.5 ± 4.5 mL/kg/min, p = 0.50; female 49.6 ± 3 vs. 50.7 ± 2.6 mL/kg/min, p = 0.47) between 2019 and 2021. When comparing the time results of the National Championships, 54.8% of the athletes showed an improvement (p = 0.75). CONCLUSIONS: COVID infection with short-term detraining did not affect the performance of well-trained swimmers. According to our results, the COVID pandemic did not impair the effectiveness of the preparation for the Tokyo Olympics.


Subject(s)
COVID-19 , Athletes , Female , Humans , Male , SARS-CoV-2 , Swimming , Tokyo
SELECTION OF CITATIONS
SEARCH DETAIL